PowerBestFit
        
        extends BestFit
    
    
            
            in package
            
        
    
    
    
Table of Contents
Properties
- $adjustToZero : bool
- Flag indicating whether values should be adjusted to Y=0.
- $bestFitType : string
- Algorithm type to use for best-fit (Name of this Trend class).
- $correlation : float
- $covariance : float
- $DFResiduals : float
- $error : bool
- Indicator flag for a calculation error.
- $f : float
- $goodnessOfFit : float
- $intersect : float
- $intersectSE : float
- $slope : float
- $slopeSE : float
- $SSRegression : float
- $SSResiduals : float
- $stdevOfResiduals : float
- $valueCount : int
- Number of entries in the sets of x- and y-value arrays.
- $xOffset : float
- $xValues : array<string|int, float>
- X-value dataseries of values.
- $yBestFitValues : array<string|int, float>
- Y-value series of best-fit values.
- $yOffset : float
- $yValues : array<string|int, float>
- Y-value dataseries of values.
Methods
- __construct() : mixed
- Define the regression and calculate the goodness of fit for a set of X and Y data values.
- getBestFitType() : string
- getCorrelation() : float
- getCovariance() : float
- getDFResiduals() : float
- getEquation() : string
- Return the Equation of the best-fit line.
- getError() : bool
- getF() : float
- getGoodnessOfFit() : float
- Return the goodness of fit for this regression.
- getGoodnessOfFitPercent() : float
- Return the goodness of fit for this regression.
- getIntersect() : float
- Return the Value of X where it intersects Y = 0.
- getIntersectSE() : float
- Return the standard error of the Intersect.
- getSlope() : float
- Return the Slope of the line.
- getSlopeSE() : float
- Return the standard error of the Slope.
- getSSRegression() : float
- getSSResiduals() : float
- getStdevOfResiduals() : float
- Return the standard deviation of the residuals for this regression.
- getValueOfXForY() : float
- Return the X-Value for a specified value of Y.
- getValueOfYForX() : float
- Return the Y-Value for a specified value of X.
- getXValues() : array<string|int, float>
- Return the original set of X-Values.
- getYBestFitValues() : array<string|int, float>
- calculateGoodnessOfFit() : void
- leastSquareFit() : void
Properties
$adjustToZero
Flag indicating whether values should be adjusted to Y=0.
        protected
            bool
    $adjustToZero
     = false
    
    
    
    
    
$bestFitType
Algorithm type to use for best-fit (Name of this Trend class).
        protected
            string
    $bestFitType
     = 'power'
    
    
    
    
    
$correlation
        protected
            float
    $correlation
     = 0
    
    
    
    
    
$covariance
        protected
            float
    $covariance
     = 0
    
    
    
    
    
$DFResiduals
        protected
            float
    $DFResiduals
     = 0
    
    
    
    
    
$error
Indicator flag for a calculation error.
        protected
            bool
    $error
     = false
    
    
    
    
    
$f
        protected
            float
    $f
     = 0
    
    
    
    
    
$goodnessOfFit
        protected
            float
    $goodnessOfFit
     = 1
    
    
    
    
    
$intersect
        protected
            float
    $intersect
     = 0
    
    
    
    
    
$intersectSE
        protected
            float
    $intersectSE
     = 0
    
    
    
    
    
$slope
        protected
            float
    $slope
     = 0
    
    
    
    
    
$slopeSE
        protected
            float
    $slopeSE
     = 0
    
    
    
    
    
$SSRegression
        protected
            float
    $SSRegression
     = 0
    
    
    
    
    
$SSResiduals
        protected
            float
    $SSResiduals
     = 0
    
    
    
    
    
$stdevOfResiduals
        protected
            float
    $stdevOfResiduals
     = 0
    
    
    
    
    
$valueCount
Number of entries in the sets of x- and y-value arrays.
        protected
            int
    $valueCount
    
    
    
    
    
    
$xOffset
        protected
            float
    $xOffset
     = 0
    
    
    
    
    
$xValues
X-value dataseries of values.
        protected
            array<string|int, float>
    $xValues
     = []
    
    
    
    
    
$yBestFitValues
Y-value series of best-fit values.
        protected
            array<string|int, float>
    $yBestFitValues
     = []
    
    
    
    
    
$yOffset
        protected
            float
    $yOffset
     = 0
    
    
    
    
    
$yValues
Y-value dataseries of values.
        protected
            array<string|int, float>
    $yValues
     = []
    
    
    
    
    
Methods
__construct()
Define the regression and calculate the goodness of fit for a set of X and Y data values.
    public
                    __construct(array<string|int, float> $yValues[, array<string|int, float> $xValues = [] ][, bool $const = true ]) : mixed
    Parameters
- $yValues : array<string|int, float>
- 
                    The set of Y-values for this regression 
- $xValues : array<string|int, float> = []
- 
                    The set of X-values for this regression 
- $const : bool = true
getBestFitType()
    public
                    getBestFitType() : string
    Return values
stringgetCorrelation()
    public
                    getCorrelation([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
- 
                    Number of places of decimal precision to return 
Return values
floatgetCovariance()
    public
                    getCovariance([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
- 
                    Number of places of decimal precision to return 
Return values
floatgetDFResiduals()
    public
                    getDFResiduals([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
- 
                    Number of places of decimal precision to return 
Return values
floatgetEquation()
Return the Equation of the best-fit line.
    public
                    getEquation([int $dp = 0 ]) : string
    Parameters
- $dp : int = 0
- 
                    Number of places of decimal precision to display 
Return values
stringgetError()
    public
                    getError() : bool
    Return values
boolgetF()
    public
                    getF([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
- 
                    Number of places of decimal precision to return 
Return values
floatgetGoodnessOfFit()
Return the goodness of fit for this regression.
    public
                    getGoodnessOfFit([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
- 
                    Number of places of decimal precision to return 
Return values
floatgetGoodnessOfFitPercent()
Return the goodness of fit for this regression.
    public
                    getGoodnessOfFitPercent([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
- 
                    Number of places of decimal precision to return 
Return values
floatgetIntersect()
Return the Value of X where it intersects Y = 0.
    public
                    getIntersect([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
- 
                    Number of places of decimal precision to display 
Return values
floatgetIntersectSE()
Return the standard error of the Intersect.
    public
                    getIntersectSE([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
- 
                    Number of places of decimal precision to display 
Return values
floatgetSlope()
Return the Slope of the line.
    public
                    getSlope([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
- 
                    Number of places of decimal precision to display 
Return values
floatgetSlopeSE()
Return the standard error of the Slope.
    public
                    getSlopeSE([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
- 
                    Number of places of decimal precision to display 
Return values
floatgetSSRegression()
    public
                    getSSRegression([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
- 
                    Number of places of decimal precision to return 
Return values
floatgetSSResiduals()
    public
                    getSSResiduals([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
- 
                    Number of places of decimal precision to return 
Return values
floatgetStdevOfResiduals()
Return the standard deviation of the residuals for this regression.
    public
                    getStdevOfResiduals([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
- 
                    Number of places of decimal precision to return 
Return values
floatgetValueOfXForY()
Return the X-Value for a specified value of Y.
    public
                    getValueOfXForY(float $yValue) : float
    Parameters
- $yValue : float
- 
                    Y-Value 
Return values
float —X-Value
getValueOfYForX()
Return the Y-Value for a specified value of X.
    public
                    getValueOfYForX(float $xValue) : float
    Parameters
- $xValue : float
- 
                    X-Value 
Return values
float —Y-Value
getXValues()
Return the original set of X-Values.
    public
                    getXValues() : array<string|int, float>
    Return values
array<string|int, float> —X-Values
getYBestFitValues()
    public
                    getYBestFitValues() : array<string|int, float>
    Return values
array<string|int, float>calculateGoodnessOfFit()
    protected
                    calculateGoodnessOfFit(float $sumX, float $sumY, float $sumX2, float $sumY2, float $sumXY, float $meanX, float $meanY, bool|int $const) : void
    Parameters
- $sumX : float
- $sumY : float
- $sumX2 : float
- $sumY2 : float
- $sumXY : float
- $meanX : float
- $meanY : float
- $const : bool|int
leastSquareFit()
    protected
                    leastSquareFit(array<string|int, float> $yValues, array<string|int, float> $xValues, bool $const) : void
    Parameters
- $yValues : array<string|int, float>
- $xValues : array<string|int, float>
- $const : bool