LogarithmicBestFit
        
        extends BestFit
    
    
            
            in package
            
        
    
    
    
Table of Contents
Properties
- $adjustToZero : bool
 - Flag indicating whether values should be adjusted to Y=0.
 - $bestFitType : string
 - Algorithm type to use for best-fit (Name of this Trend class).
 - $correlation : float
 - $covariance : float
 - $DFResiduals : float
 - $error : bool
 - Indicator flag for a calculation error.
 - $f : float
 - $goodnessOfFit : float
 - $intersect : float
 - $intersectSE : float
 - $slope : float
 - $slopeSE : float
 - $SSRegression : float
 - $SSResiduals : float
 - $stdevOfResiduals : float
 - $valueCount : int
 - Number of entries in the sets of x- and y-value arrays.
 - $xOffset : float
 - $xValues : array<string|int, float>
 - X-value dataseries of values.
 - $yBestFitValues : array<string|int, float>
 - Y-value series of best-fit values.
 - $yOffset : float
 - $yValues : array<string|int, float>
 - Y-value dataseries of values.
 
Methods
- __construct() : mixed
 - Define the regression and calculate the goodness of fit for a set of X and Y data values.
 - getBestFitType() : string
 - getCorrelation() : float
 - getCovariance() : float
 - getDFResiduals() : float
 - getEquation() : string
 - Return the Equation of the best-fit line.
 - getError() : bool
 - getF() : float
 - getGoodnessOfFit() : float
 - Return the goodness of fit for this regression.
 - getGoodnessOfFitPercent() : float
 - Return the goodness of fit for this regression.
 - getIntersect() : float
 - Return the Value of X where it intersects Y = 0.
 - getIntersectSE() : float
 - Return the standard error of the Intersect.
 - getSlope() : float
 - Return the Slope of the line.
 - getSlopeSE() : float
 - Return the standard error of the Slope.
 - getSSRegression() : float
 - getSSResiduals() : float
 - getStdevOfResiduals() : float
 - Return the standard deviation of the residuals for this regression.
 - getValueOfXForY() : float
 - Return the X-Value for a specified value of Y.
 - getValueOfYForX() : float
 - Return the Y-Value for a specified value of X.
 - getXValues() : array<string|int, float>
 - Return the original set of X-Values.
 - getYBestFitValues() : array<string|int, float>
 - calculateGoodnessOfFit() : void
 - leastSquareFit() : void
 
Properties
$adjustToZero
Flag indicating whether values should be adjusted to Y=0.
        protected
            bool
    $adjustToZero
     = false
    
    
    
    
    
$bestFitType
Algorithm type to use for best-fit (Name of this Trend class).
        protected
            string
    $bestFitType
     = 'logarithmic'
    
    
    
    
    
$correlation
        protected
            float
    $correlation
     = 0
    
    
    
    
    
$covariance
        protected
            float
    $covariance
     = 0
    
    
    
    
    
$DFResiduals
        protected
            float
    $DFResiduals
     = 0
    
    
    
    
    
$error
Indicator flag for a calculation error.
        protected
            bool
    $error
     = false
    
    
    
    
    
$f
        protected
            float
    $f
     = 0
    
    
    
    
    
$goodnessOfFit
        protected
            float
    $goodnessOfFit
     = 1
    
    
    
    
    
$intersect
        protected
            float
    $intersect
     = 0
    
    
    
    
    
$intersectSE
        protected
            float
    $intersectSE
     = 0
    
    
    
    
    
$slope
        protected
            float
    $slope
     = 0
    
    
    
    
    
$slopeSE
        protected
            float
    $slopeSE
     = 0
    
    
    
    
    
$SSRegression
        protected
            float
    $SSRegression
     = 0
    
    
    
    
    
$SSResiduals
        protected
            float
    $SSResiduals
     = 0
    
    
    
    
    
$stdevOfResiduals
        protected
            float
    $stdevOfResiduals
     = 0
    
    
    
    
    
$valueCount
Number of entries in the sets of x- and y-value arrays.
        protected
            int
    $valueCount
    
    
    
    
    
    
$xOffset
        protected
            float
    $xOffset
     = 0
    
    
    
    
    
$xValues
X-value dataseries of values.
        protected
            array<string|int, float>
    $xValues
     = []
    
    
    
    
    
$yBestFitValues
Y-value series of best-fit values.
        protected
            array<string|int, float>
    $yBestFitValues
     = []
    
    
    
    
    
$yOffset
        protected
            float
    $yOffset
     = 0
    
    
    
    
    
$yValues
Y-value dataseries of values.
        protected
            array<string|int, float>
    $yValues
     = []
    
    
    
    
    
Methods
__construct()
Define the regression and calculate the goodness of fit for a set of X and Y data values.
    public
                    __construct(array<string|int, float> $yValues[, array<string|int, float> $xValues = [] ][, bool $const = true ]) : mixed
    Parameters
- $yValues : array<string|int, float>
 - 
                    
The set of Y-values for this regression
 - $xValues : array<string|int, float> = []
 - 
                    
The set of X-values for this regression
 - $const : bool = true
 
getBestFitType()
    public
                    getBestFitType() : string
    Return values
stringgetCorrelation()
    public
                    getCorrelation([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
 - 
                    
Number of places of decimal precision to return
 
Return values
floatgetCovariance()
    public
                    getCovariance([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
 - 
                    
Number of places of decimal precision to return
 
Return values
floatgetDFResiduals()
    public
                    getDFResiduals([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
 - 
                    
Number of places of decimal precision to return
 
Return values
floatgetEquation()
Return the Equation of the best-fit line.
    public
                    getEquation([int $dp = 0 ]) : string
    Parameters
- $dp : int = 0
 - 
                    
Number of places of decimal precision to display
 
Return values
stringgetError()
    public
                    getError() : bool
    Return values
boolgetF()
    public
                    getF([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
 - 
                    
Number of places of decimal precision to return
 
Return values
floatgetGoodnessOfFit()
Return the goodness of fit for this regression.
    public
                    getGoodnessOfFit([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
 - 
                    
Number of places of decimal precision to return
 
Return values
floatgetGoodnessOfFitPercent()
Return the goodness of fit for this regression.
    public
                    getGoodnessOfFitPercent([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
 - 
                    
Number of places of decimal precision to return
 
Return values
floatgetIntersect()
Return the Value of X where it intersects Y = 0.
    public
                    getIntersect([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
 - 
                    
Number of places of decimal precision to display
 
Return values
floatgetIntersectSE()
Return the standard error of the Intersect.
    public
                    getIntersectSE([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
 - 
                    
Number of places of decimal precision to display
 
Return values
floatgetSlope()
Return the Slope of the line.
    public
                    getSlope([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
 - 
                    
Number of places of decimal precision to display
 
Return values
floatgetSlopeSE()
Return the standard error of the Slope.
    public
                    getSlopeSE([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
 - 
                    
Number of places of decimal precision to display
 
Return values
floatgetSSRegression()
    public
                    getSSRegression([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
 - 
                    
Number of places of decimal precision to return
 
Return values
floatgetSSResiduals()
    public
                    getSSResiduals([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
 - 
                    
Number of places of decimal precision to return
 
Return values
floatgetStdevOfResiduals()
Return the standard deviation of the residuals for this regression.
    public
                    getStdevOfResiduals([int $dp = 0 ]) : float
    Parameters
- $dp : int = 0
 - 
                    
Number of places of decimal precision to return
 
Return values
floatgetValueOfXForY()
Return the X-Value for a specified value of Y.
    public
                    getValueOfXForY(float $yValue) : float
    Parameters
- $yValue : float
 - 
                    
Y-Value
 
Return values
float —X-Value
getValueOfYForX()
Return the Y-Value for a specified value of X.
    public
                    getValueOfYForX(float $xValue) : float
    Parameters
- $xValue : float
 - 
                    
X-Value
 
Return values
float —Y-Value
getXValues()
Return the original set of X-Values.
    public
                    getXValues() : array<string|int, float>
    Return values
array<string|int, float> —X-Values
getYBestFitValues()
    public
                    getYBestFitValues() : array<string|int, float>
    Return values
array<string|int, float>calculateGoodnessOfFit()
    protected
                    calculateGoodnessOfFit(float $sumX, float $sumY, float $sumX2, float $sumY2, float $sumXY, float $meanX, float $meanY, bool|int $const) : void
    Parameters
- $sumX : float
 - $sumY : float
 - $sumX2 : float
 - $sumY2 : float
 - $sumXY : float
 - $meanX : float
 - $meanY : float
 - $const : bool|int
 
leastSquareFit()
    protected
                    leastSquareFit(array<string|int, float> $yValues, array<string|int, float> $xValues, bool $const) : void
    Parameters
- $yValues : array<string|int, float>
 - $xValues : array<string|int, float>
 - $const : bool