Documentation

GammaBase
in package

AbstractYes

Table of Contents

Methods

gammaValue()  : float
incompleteGamma()  : float
logGamma()  : float
logGamma function.
calculateDistribution()  : float
calculateInverse()  : float|string
logGamma3()  : float
logGamma4()  : float

Methods

gammaValue()

public static gammaValue(float $value) : float
Parameters
$value : float
Return values
float

incompleteGamma()

public static incompleteGamma(float $a, float $x) : float
Parameters
$a : float
$x : float
Return values
float

logGamma()

logGamma function.

public static logGamma(float $x) : float

Original author was Jaco van Kooten. Ported to PHP by Paul Meagher.

The natural logarithm of the gamma function.
Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz
Applied Mathematics Division
Argonne National Laboratory
Argonne, IL 60439

References:

  1. W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.
  2. K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.
  3. Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.

From the original documentation:

This routine calculates the LOG(GAMMA) function for a positive real argument X. Computation is based on an algorithm outlined in references 1 and 2. The program uses rational functions that theoretically approximate LOG(GAMMA) to at least 18 significant decimal digits. The approximation for X > 12 is from reference 3, while approximations for X < 12.0 are similar to those in reference 1, but are unpublished. The accuracy achieved depends on the arithmetic system, the compiler, the intrinsic functions, and proper selection of the machine-dependent constants.

Error returns:
The program returns the value XINF for X .LE. 0.0 or when overflow would occur. The computation is believed to be free of underflow and overflow.

Parameters
$x : float
Tags
version
1.1
author

Jaco van Kooten

Return values
float

MAX_VALUE for x < 0.0 or when overflow would occur, i.e. x > 2.55E305

calculateDistribution()

protected static calculateDistribution(float $value, float $a, float $b, bool $cumulative) : float
Parameters
$value : float
$a : float
$b : float
$cumulative : bool
Return values
float

calculateInverse()

protected static calculateInverse(float $probability, float $alpha, float $beta) : float|string
Parameters
$probability : float
$alpha : float
$beta : float
Return values
float|string

logGamma3()

protected static logGamma3(float $y) : float
Parameters
$y : float
Return values
float

logGamma4()

protected static logGamma4(float $y) : float
Parameters
$y : float
Return values
float

        
On this page

Search results